Offerta Didattica

 

INGEGNERIA CIVILE

GEOMETRIA E ALGEBRA

Classe di corso: L-7 - Classe delle lauree in Ingegneria civile e ambientale
AA: 2020/2021
Sedi: MESSINA
SSDTAFtipologiafrequenzamoduli
MAT/03BaseLiberaLiberaNo
CFUCFU LEZCFU LABCFU ESEOREORE LEZORE LABORE ESE
64024824024
Legenda
CFU: n. crediti dell’insegnamento
CFU LEZ: n. cfu di lezione in aula
CFU LAB: n. cfu di laboratorio
CFU ESE: n. cfu di esercitazione
FREQUENZA:Libera/Obbligatoria
MODULI:SI - L'insegnamento prevede la suddivisione in moduli, NO - non sono previsti moduli
ORE: n. ore programmate
ORE LEZ: n. ore programmate di lezione in aula
ORE LAB: n. ore programmate di laboratorio
ORE ESE: n. ore programmate di esercitazione
SSD:sigla del settore scientifico disciplinare dell’insegnamento
TAF:sigla della tipologia di attività formativa
TIPOLOGIA:LEZ - lezioni frontali, ESE - esercitazioni, LAB - laboratorio

Obiettivi Formativi

Il corso si pone come obiettivo quello di:  OF1 (Conoscenza e comprensione): fare acquisire agli studenti un’adeguata conoscenza e comprensione di quei principi teorici dell'Algebra Lineare e della Geometria che sono fondamentali per lo studio delle discipline ingegneristiche;  OF2 (Capacità di applicare conoscenza e comprensione): fare sviluppare la capacità di applicare in maniera autonoma le nozioni acquisite per impostare, analizzare e risolvere problemi;  OF3 (Autonomia di giudizio): fare ottenere autonomia di giudizio al fine di poter utilizzare come strumenti utili ai corsi di Ingegneria Civile gli argomenti studiati, quali le principali strutture algebriche, le figure geometriche nel piano e nello spazio e gli aspetti fondamentali della teoria delle matrici, con applicazioni allo studio degli operatori lineari e bilineari;  OF4 (Abilità comunicative): fare acquisire un’idonea abilità di comunicazione attraverso l’uso del metodo logico-deduttivo proprio dell’algebra, al fine di sviluppare un linguaggio scientifico rigoroso;  OF5 (Capacità di apprendimento): fare sviluppare le abilità di apprendimento necessarie per affrontare gli studi successivi.

Learning Goals

The course aims:  OF1 (Knowledge and understanding): to make students acquire adequate knowledge and understanding of those theoretical principles of Linear Algebra and Geometry that are fundamental for the study of engineering disciplines;  OF2 (Ability to apply knowledge and understanding): to develop the ability to independently apply the knowledge acquired to set up, analyze and solve problems;  OF3 (Autonomy of judgment): to obtain independent judgment in order to be able to use the subjects studied as useful tools for Civil Engineering courses such as the main algebraic structures, the geometric figures in the plane and in the space and the fundamental aspects of matrix theory, with applications to the study of linear and bilinear operators;  OF4 (Communication skills): to acquire a suitable communication skill through the use of the logical-deductive method proper to algebra, in order to develop a rigorous scientific language;  OF5 (Learning skills): to develop the learning skills necessary to deal with the subsequent studies.

Metodi didattici

Lezioni frontali ed esercizi alla lavagna di preparazione alle prove in itinere e all’esame scritto finale.

Teaching Methods

Lectures and exercises at the blackboard to prepar the students for the intermediate tests and the final written exam.

Prerequisiti

Nozioni di base dell'algebra dei polinomi, di trigonometria e di geometria euclidea piana.

Prerequisites

Basics of polynomial algebra, trigonometry and Euclidean plane geometry.

Verifiche dell'apprendimento

Sono previste due prove scritte in itinere (facoltative) che prevedono la risoluzione di esercizi su argomenti di algebra lineare (prima prova) e su argomenti di geometria nel piano e nello spazio (seconda prova). Ogni prova s’intende superata se lo studente consegue un voto di almeno 18/30. Lo studente che supera entrambe le prove intermedie è considerato idoneo al superamento dell’esame scritto e quindi esonerato dalla prova scritta finale. Il voto finale è la media aritmetica dei voti conseguiti nelle due prove superate. Lo studente che non supera una delle due prove intermedie deve sostenere l’esame scritto finale in una qualsiasi delle date previste dal calendario d'esami. La prova scritta finale riguarda argomenti della parte di programma relativa alla prova precedentemente non superata. Se la prova finale ha esito positivo, il voto finale è la media aritmetica dei voti conseguiti in ciascuna delle prove (intermedia e finale) sostenute e superate. In ogni caso, lo studente può decidere di non affrontare alcuna prova intermedia e sostenere solo l’esame scritto finale (in una qualsiasi delle date previste dal calendario d'esami), che prevede la risoluzione di esercizi su argomenti riguardanti l’intero programma e che s’intende superato se il punteggio conseguito è pari o superiore a 18/30. Lo studente che supera la prova scritta è ammesso a sostenere l’esame orale, che consiste in domande su argomenti trattati durante il corso ed è volto ad accertare le conoscenze acquisite e la capacità di esporre gli argomenti mediante l’uso di un linguaggio scientifico appropriato. Il voto finale è la media aritmetica dei voti conseguiti nella prova scritta e nell’esame orale e l’esame s’intende superato se il voto finale è pari o superiore a 18/30.

Assessment

There are two (optional) intermediate written tests which provide for the resolution of exercises on topics of linear algebra (first test) and on topics of geometry in the plane and in the space (second test). Each test is passed if the student obtains a grade of at least 18/30. The student who passes both intermediate tests is considered eligible to pass the written exam and therefore exempted from the final written test. The final grade is the arithmetic mean of the grades obtained in the two tests. The student who does not pass one of the two intermediate tests must take the final written exam on any of the dates scheduled in the exam calendar. The final written test concerns topics in the part of the program related to the previously failed test. If the final test is successful, the final grade is the arithmetic mean of the grades obtained in each of the tests (intermediate and final tests). In any case, the student can decide not to take any intermediate test and take only the final written exam (on any of the dates scheduled in the exam calendar), which provides for the resolution of exercises on topics concerning the whole program and which is considered passed if the score is equal to or greater than 18/30. The student who passes the written exam can take the oral exam, which consists of questions on topics covered during the lectures and is aimed at ensuring the acquired knowledge and the ability to present the topics with appropriate scientific language. The final grade is the arithmetic mean of the grades obtained in the written and oral exams and the exam is passed if the final grade is equal to or greater than 18/30.

Programma del Corso

Spazi vettoriali. I vettori dello spazio geometrico. Sottospazi vettoriali. Dipendenza lineare. Base di uno spazio vettoriale. Dimensione di uno spazio vettoriale. Matrici. Operazioni tra matrici. Determinante di una matrice quadrata. Matrici invertibili. Rango di una matrice. Sistemi di equazioni lineari. Sistemi lineari omogenei. Applicazioni lineari tra spazi vettoriali. Applicazioni lineari e matrici. Autovalori e autovettori di un endomorfismo. Diagonalizzazione di un endomorfismo e di una matrice. Forme bilineari e forme quadratiche. Prodotto scalare e spazi euclidei. Basi ortonormali e proiezioni ortogonali. Rappresentazione di una retta. Intersezione di due rette e condizione di parallelismo. Fascio di rette. Angolo di due rette e condizione di ortogonalità. Distanze. Circonferenza. Luoghi geometrici: ellisse, iperbole, parabola. Coniche. Rappresentazione di un piano. Intersezione di due piani e condizione di parallelismo. Fascio di piani. Stella di piani. Rappresentazione di una retta nello spazio. Condizioni di parallelismo. Angoli e distanze. Condizioni di ortogonalità. Sfera. Circonferenza nello spazio. Quadriche.

Course Syllabus

Vector spaces. The vectors of the geometric space. Vector subspaces. Linear dependence. Base of a vector space. Dimension of a vector space. Matrices. Operations on matrices. Determinant of a square matrix. Invertible matrices. Rank of a matrix. Linear systems. Homogeneous linear systems. Linear maps between vector spaces. Linear maps and matrices. Autovalues and autovectors of an endomorphism. Diagonizability of an endomorphism and of a matrix. Bilinear and quadratic forms. Scalar product and euclidean spaces. Orthonormal bases and orthogonal projections. Representation of a line. Intersection of two lines and parallelism condition. Sheaf of lines. Angle of two lines and condition of orthogonality. Distances. Circle. Geometric logos: ellipse, hyperbola, parabola. Conics. Representation of a plane. Intersection of two planes and parallelism condition. Sheaf of planes. Star of planes. Representation of a line in the space. Parallelism conditions. Angles and distances. Orthogonality conditions. Sphere. Circle in the space. Quadrics.

Testi di riferimento: S. Greco, P. Valabrega, Lezioni di Geometria, Levrotto Bella, Torino M. Abate, C. De Fabritiis, Geometria analitica con elementi di algebra lineare, McGraw-Hill Education, Milano M. Abate, C. De Fabritiis, Esercizi di geometria, McGraw-Hill Education, Milano Appunti forniti dal docente

Elenco delle unità didattiche costituenti l'insegnamento

Docente: ANTOINETTE TRIPODI

Orario di Ricevimento - ANTOINETTE TRIPODI

Dato non disponibile
  • Segui Unime su:
  • istagram32x32.jpg
  • facebook
  • youtube
  • twitter
  • UnimeMobile
  • tutti